12 – Security, CCTV and Access Control

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Authors</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>4 April 2012</td>
<td>Alex Chryss</td>
<td></td>
</tr>
<tr>
<td>1.02</td>
<td>15 January 2013</td>
<td>Ben Crossling</td>
<td>Changed references to Project Lead</td>
</tr>
<tr>
<td>2.0</td>
<td>26 October 2015</td>
<td>Ross McLoughlin</td>
<td>General Revision</td>
</tr>
</tbody>
</table>
12 Security, CCTV and Access Control

Security Systems General

Closed Circuit Television (CCTV) Systems General

Access Control General

Security Systems General

12.01 The Campus and Buildings Requirements Manual (the CBRM, the Requirements or the Manual) documents the minimum design and construction requirements for new, refurbishment or repurposed building works, landscapes and engineering/infrastructure projects on buildings, facilities and campuses of the Australian National University (the ANU or the University). The Requirements are prepared for the direction of a Consultant, Designer or Project Manager in the preparation of project specific documentation and in the delivery of project works.

12.02 Notwithstanding any Consultant’s particular discipline or area of responsibility, each Consultant and/or designer shall consider the document in its entirety. The complete CBRM consists of the following Sections which may be referred to within this Section:

<table>
<thead>
<tr>
<th>Campus and Building Requirements Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 01</td>
</tr>
<tr>
<td>Section 02</td>
</tr>
<tr>
<td>Section 03</td>
</tr>
<tr>
<td>Section 04</td>
</tr>
<tr>
<td>Section 05</td>
</tr>
<tr>
<td>Section 06</td>
</tr>
<tr>
<td>Section 07</td>
</tr>
<tr>
<td>Section 08</td>
</tr>
<tr>
<td>Section 09</td>
</tr>
<tr>
<td>Section 10</td>
</tr>
<tr>
<td>Section 11</td>
</tr>
<tr>
<td>Section 12</td>
</tr>
<tr>
<td>Section 13</td>
</tr>
</tbody>
</table>
Principles of Security Levels

12.03 The appropriate level of security shall be established during the design phase of the project.

12.04 The degree of damage, which could be caused to the ANU through personal injury; loss of or damage to property (including intellectual property); or interruption of a critical service determines the basis for the level of security for buildings, or areas within buildings.

12.05 The ANU has a policy on site security that is predicated upon electronic access control for all perimeter doors on campus. Through a process of risk assessments during design and throughout the life of the building additional security requirements may be identified to attain the appropriate level of security risk management.

12.06 All perimeter doors shall be electronically secured and monitored to ANU specifications (available separately) with backup manual locking to protect against long term power outages. Internal doors maybe locked electronically or using a keying system appropriate for the area. Electronic security devices shall be used internally when risk assessments indicate a higher level of security is required. The type and location of any electronic security device shall be subject to discussion with the Principal’s Representative (the Principal or the Principal’s Project Manager) during the early design stage.

Application to Building Design

12.07 Design principles having security implications include the following:
- electronic access control systems;
- passenger lift control functions;
- design of the building façade;
- design of accessible low level windows;
- design of internal areas to ensure that high security functions are grouped together;
- external lighting; and
- profile of usage e.g. afterhours access, types of research and teaching, security risks for visitors, students or staff members emanating from the activities within the building.

Crime Prevention through Environmental Design (CPTED) Principles

12.08 CPTED is to be incorporated into the design of new buildings (and major refurbishments) in accordance with the policy: http://policies.anu.edu.au/policies/security_buildings_and_site/policy

12.09 Where major building renovations or changes to building usage are intended, a security design consistent with the ANU’s principles shall be provided.

12.010 Where applicable, refer to the Principal’s Representative for a security risk assessment and Section.07 Electrical Services for guidance on luminaires and Section.08 Fire Protection Systems.

Peripheral Security

12.011 External lighting shall be provided to all buildings to ensure that:
- the main external entrance is well lit; and
- all perimeter doors and other ground floor points of access are properly illuminated.

12.012 Security lighting from the building shall extend to adjacent car parks and associated illuminated pedestrian path.

12.013 The building façade shall be designed to minimise recesses, alcoves, columns and the like that may be a security hazard.

12.014 Plant room access shall be isolated from the main building security perimeter to ensure that service personnel need not enter secured areas to access the plant room.

12.015 Main entry doors shall be the principle access for all people entering or leaving the building.

12.016 Standard doors located on the building’s façade shall be fitted with magnetic locking devices wherever possible. Where reed switches are used, they should detect door open/closed status. Where double doors are installed, the inactive leaf shall be secured with a lockable panic bolt, keyed to the building’s master key system. A suitable door-closing mechanism shall be installed on each active door leaf.

12.017 Electromechanical doors shall be fitted with the appropriate actuator linked to the electronic access control system.

12.018 Door actuators shall have the following features:
 - Automatic door controllers are required to be serviced by the ANU service provider and are required to have universal service access.
 - battery back-up for a minimum of 8 hours in the event of mains power failure. In the event of a power failure, the battery back-up system should keep the doors locked and secure unless there is a fire alarm;
 - the ability to physically monitor doors when open and closed;
 - contain a separate electric lock for positive locking;
 - the ability to monitor the status of the electric lock;
 - Automatic safety reversing of doors;
 - self-checking safety Photoelectric Beams (P.E. Beams); and
 - afterhours access via an electronic control system and manual override.

12.019 Emergency exit doors shall have the following features:
 - no external door furniture;
 - all door furniture shall allow for single handed operation;
 - doors shall be hung to open out with triple hinges of a secure design and construction;
 - door closing mechanism to ANU specification; and
 - doors shall be of solid core construction (fire rated as necessary).

12.020 External doors shall be secured by an electronic lock linked to the fire alarm and/or the ANU central monitoring station.
12.021 Where keyed locks are accepted by the ANU, reed switches shall be installed to monitor door open/closed status.

12.022 Electronic access systems shall meet the ANU specifications and integrate into existing monitoring arrangements, be fully monitored and programmable to lock/open doors as required by a user defined schedule. Magnetic card swipe readers shall allow access/egress outside normal business hours. All fire exit doors (access controlled) shall have connections between the fire and Cardax system as appropriate to ensure compliance with fire trip requirements.

Internal Security

12.023 The level of security required by the ANU and the building user through a risk assessment process shall determine the level of security systems used within buildings.

12.024 Generally, areas shall be zoned according to their security requirements with high security areas grouped together. The principles outlined in test required shall be utilised when establishing the security requirements for access to each zone within a building.

12.025 Internal exit doors shall be keyed to the building’s master key and lock system.

12.026 Additional security devices may be required within specific areas and may include the following:

- electric door strikes;
- key override switches;
- emergency release latches;
- request-to-exit push buttons;
- duress alarm buttons;
- break glass units;
- passive infra-red detectors;
- communications systems; and
- Closed circuit television (CCTV).
Closed Circuit Television Systems General

12.028 The ANU will review and ensure compatibility of any proposed and designed CCTV system based upon the IP CCTV System detailed below. The system shall be a Geutebruck (or equal equivalent capable of system continuity and consistency) fully IP CCTV System, installed by a certified Geutebruck installer.

12.029 Provide an IP based CCTV surveillance system to permit overall visual surveillance by ANU Security of public and secure areas. The system will comprise of network switches, backbone cabling, IP CCTV Cameras, server and monitor and all required brackets and housings in order to ensure system is operational. All cameras shall be powered using power over Ethernet (PoE) in network switches.

12.030 Design all interface equipment and any necessary lightning protection and other items to make the system completely operational.

12.031 Provide a complete and separate Local Area Network (LAN) backbone to facilitate the transferring and communication of all video and data between equipment. Liaise with the Principal’s Representative on system design and setup including the installation of relevant client software. All elements within the CCTV system are to support IPv6.

12.032 All CCTV control, monitoring and recording equipment shall be housed within the Equipment Racks in the ANU building IT Server Room (or ANU Security Control Room rack, as appropriate). Equipment racks are to be included in system design.

12.033 All necessary system design, programming (i.e. videotext, point descriptors, display maps, alarm message text) is to be included.

Cameras

12.034 Camera images are to provide clean, roll-free switching and image stability. All cameras shall be fully compatible and integrated with the Geutebruck software, in appropriate domes or external grade housings as locations dictate. Cameras shall be provided with Activity Detection and Video Motion Detection inside the camera.

Lenses

12.035 All lenses used are to be constructed of colour corrected glass optics and have steel body construction. To accommodate any changes in lighting, all lenses are to be identical in make and model and be Direct Coupled (DC) Auto Iris types. Lenses are to be of reputable manufacture that has been operating in the optics industry for over the past ten years. Acceptable types include Pentax, Computar, Fujinon, Navitar and Panasonic. Final selection of focal length will be made on site by the Consultant system designer.

Camera Housings

12.036 All Camera housings are to conform to the following:

- minimum internal dimensions to accommodate the camera and lens;
- fit with tamper locks to prevent unauthorised access;
- fit with tamper switch to be monitored by security system;
- completely sealed to protect against environmental damage and condensation;
- any dome housing utilising tint is not to reduce light input by more than 1 F stop;
- all external housings are to be mounted at a minimum of 3.0 m off ground level. Any housing below this height must be a high security type; and
- all internal cameras are to be mounted at a minimum of 2.2 m off ground level.

12.037 Camera mounting is to conform to the following:
- all cabling to the camera is to be concealed within the mounting bracket;
- utilise any accessories e.g. ceiling/wall/pole mount brackets, as required by the situation;
- all cameras mounted on brackets are to provide manual adjustment of position of +30° to -90° tilt and 360° pan;
- be firmly locked into the desired position and be rigidly supported to prevent any vibrations and movement; and
- the housings tendered are to be demonstrated to the Consultant system designer prior to install for evaluation.

Internal Dome Housing

12.038 All cameras to be mounted internally are to be placed in a housing conforming to the following as a minimum:

<table>
<thead>
<tr>
<th>Internal Dome Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Style</td>
</tr>
<tr>
<td>Construction</td>
</tr>
<tr>
<td>Lens</td>
</tr>
<tr>
<td>Black inner liner</td>
</tr>
<tr>
<td>Finish</td>
</tr>
<tr>
<td>Rating</td>
</tr>
<tr>
<td>Mounting</td>
</tr>
<tr>
<td>Camera Access</td>
</tr>
<tr>
<td>Cable Entry</td>
</tr>
<tr>
<td>Internal Dimensions (WxHxD)</td>
</tr>
</tbody>
</table>

External Dome Housing
12.039 All fixed cameras to be mounted externally on a penetrable ceiling or eave and are to be placed in a weather proofed housing and fitted with heaters as appropriate for Canberra climate as detailed. Housing to further conform to the following:

<table>
<thead>
<tr>
<th>External Dome Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Style</td>
</tr>
<tr>
<td>Flush/recess mounted dome housing</td>
</tr>
<tr>
<td>Construction</td>
</tr>
<tr>
<td>1.6 mm extruded aluminium, mild steel camera bracket</td>
</tr>
<tr>
<td>Lens</td>
</tr>
<tr>
<td>3 mm MR10 GE Lexan (Polycarbonate) optically clear polycarbonate dome with no distortion in any section. Black inner liner</td>
</tr>
<tr>
<td>Tinted dome option</td>
</tr>
<tr>
<td>Finish</td>
</tr>
<tr>
<td>Polyester powder coated, colour to suit environment</td>
</tr>
<tr>
<td>Rating</td>
</tr>
<tr>
<td>IP66, IK10</td>
</tr>
<tr>
<td>Mounting</td>
</tr>
<tr>
<td>Flush – upper section flange mounted to fixed ceiling</td>
</tr>
<tr>
<td>Surface – housing to be secured to surface</td>
</tr>
<tr>
<td>Camera Access</td>
</tr>
<tr>
<td>4 x M6 Stainless steel security screw to remove lower dome hemisphere</td>
</tr>
<tr>
<td>Cable Entry</td>
</tr>
<tr>
<td>1 x 20 mm PVC gland on top rear</td>
</tr>
<tr>
<td>Thermostatic Controlled Heater</td>
</tr>
<tr>
<td>Factory Option. 7 W nominal (Canberra – minus 5°C operability)</td>
</tr>
<tr>
<td>Thermostatic Controlled Fan</td>
</tr>
<tr>
<td>Factory Option. 7 W nominal</td>
</tr>
<tr>
<td>Internal Dimensions (WxHxD)</td>
</tr>
<tr>
<td>To accommodate proposed camera and lens combination</td>
</tr>
</tbody>
</table>

12.040 All cameras to be mounted externally on a wall or a non-penetrable ceiling and are to be placed in a housing conforming to the following:

<table>
<thead>
<tr>
<th>External Tubular Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Style</td>
</tr>
<tr>
<td>Tubular housing mounted on adjustable manual pan/tilt bracket. Mounted on suitable wall bracket</td>
</tr>
<tr>
<td>Construction</td>
</tr>
<tr>
<td>1.6 mm extruded aluminium</td>
</tr>
<tr>
<td>Lens</td>
</tr>
<tr>
<td>6 mm MR10 GE Lexan (Polycarbonate)</td>
</tr>
<tr>
<td>Finish</td>
</tr>
<tr>
<td>Polyester powder coated, colour to suit environment</td>
</tr>
<tr>
<td>Rating</td>
</tr>
<tr>
<td>IP66, IK10</td>
</tr>
</tbody>
</table>
Mounting
Upper section flange mounted to fixed ceiling or tiles

Camera Access
4 x M6 Stainless steel security screws, flip top construction

Cable Entry
2 x 20 mm PVC cable compression glands

Sunshield
Adjustable along length of body

Thermostatic Controlled Heater
Factory Option. 7 W nominal

Thermostatic Controlled Fan
Factory Option. 7 W nominal

Internal Dimensions (WxHxD)
To accommodate proposed camera and lens combination

Weight
Approximately 4 kg

Power Supplies

Power over Ethernet

12.041 Where possible, all cameras are to be powered from the same point (circuit) in order to maintain synchronization and avoid ground loops. All cameras are to utilise the IEEE802.3af PoE standard for the supply of power. Further, support for IEEE802.3at is preferable.

12.042 PoE is to be supplied from associated network hardware such as switches.

Server and Network Video Recorder

12.043 The complete CCTV system comprises a complete CCTV management server and software package that will allow the operator full control of the various components within. The entire system is to be controlled via a Graphic User Interface (GUI) front end. The system will encompass a server and client machines for each operator as needed. The system will be a Geutebruck GeViScope-IP/SE and be provided with the following:
- the GUI will provide a dynamic interface allowing real-time updating of indicators such as all text, position of cameras and alarm statuses via multi coloured icons;
- the GUI must allow for the display of multiple cameras from multiple sources on the one screen. Cameras are to be listed in a tree format to the side of the viewing area. Multiple screen layouts are to be provided. Populated layouts are to be able to be saved retaining server and camera number and position for each spot;
- the GUI must be provided with MultiMap with as many individually designable maps for intuitive operation of the entire system as desired;
- display live camera images by the clicking of an icon on the map screen;
- incorporate programmable ‘macros’. Each macro is to have a minimum of five steps;
- the GUI will use password protection to allow login and logout. The user management system will allow for multiple permission levels so as to restrict functionality from certain users. An event log will allow all actions on the server to be recorded. This must be retained for a minimum 31 days on a separate physical backup location identified by the ANU;
- it shall be possible to display the video images in any combination on the overview monitor (e.g. 25, 16, 8, 4 way split, one quad and graphic display per screen, multi-images per screen, or any other combination). The content and orientation of the information shown on these screens shall be flexible allowing for live video, data, maps and other forms of visual cues to be displayed in a variety of formats. As a minimum, up to 16 separate live (real time) images at 4CIF each, shall be displayed per overview monitor;
- all recorders, switchers, control systems and other primary equipment shall be time synchronised to maintain time continuity across all components;
- all equipment (where practical) shall be assembled off site and fully tested prior to installation and operation;
- provide full 32bit SDK for high level integration;
- video motion detection shall be provided on the camera rather than on the server. When in dormant state, a camera’s image shall be recorded at five frames per second at 4CIF. When movement is detected, the camera’s full frame rate at 4CIF shall be recorded;
- the system shall be provided with a minimum 4 TB activated database size. Footage shall be stored on the server until either dumped to the ANU campus wide archive storage. Recorded footage can be overwritten with new footage once the local storage is full;
- the system shall be integrated into the ANU campus wide archive storage and configured to dump it’s footage on a 24 hour cycle; and
- the system shall be provided with a suitable monitor, keyboard and mouse.

Monitors

12.044 Provide a 19" (48 cm) TFT display with 1 x DVI-D and 1 x VGA input for use in combination with Geutebruck video surveillance systems. The operator monitor is to comply with the following minimum:

<table>
<thead>
<tr>
<th>Monitors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>19” active matrix TFT LCD</td>
</tr>
<tr>
<td>Display Colours</td>
<td>Over 16 Million colours.</td>
</tr>
<tr>
<td>Resolution</td>
<td>1280 x 1024 @ 60 Hz.</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.26 mm dot pitch or better.</td>
</tr>
<tr>
<td>Brightness</td>
<td>300 cd/m white luminance- typical</td>
</tr>
<tr>
<td>Contrast Ratio</td>
<td>800:1 contrast ratio- typical</td>
</tr>
<tr>
<td>Response Time</td>
<td>5 ms or less</td>
</tr>
<tr>
<td>Viewing Angle</td>
<td>176/170 viewing angle (H/V) minimum</td>
</tr>
<tr>
<td>Video Input</td>
<td>VGA - 15pin D-sub. and DVI-D</td>
</tr>
<tr>
<td>Case</td>
<td>Black Plastic</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Stand</td>
<td>Detachable, Adjustable</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>37 W (<2 W in power save mode)</td>
</tr>
</tbody>
</table>

Networking Equipment

12.045 It is the Consultant’s responsibility to ensure that the network infrastructure is designed and installed correctly to allow for the IP traffic expected by their solution. The network is to be designed to allow for the simultaneous recording and viewing of all documented cameras (at 25 frames per second at 4CIF) from the main server.

12.046 A separate LAN is to be created for the interconnection of all IP based CCTV system components. As a guide, the private architecture will entail:

- all cameras and encoders are to be connected via TCP/IP to an edge network switch with POE (IEEE 802.3af supply to each port);
- all edge switches will be connected to the core switch(s) by optical fibre cabling;
- the management PC, Network attached storage, client machines, printers and all other peripherals are to be directly connected to the switch(s) via a Gigabit connection;
- the system shall be capable of performing at full capacity across multiple nodes and switches within the network;
- a single port is to be connected to the ANU’s WAN for integration into the Campus Security Network. To be either Cisco or HP; Conform to C-Tick, CE Mark, FCC Part 15 Class A;
- provide LEDs for speed, link, PoE and activity on each port. Support switch latency of < 20μs for 64byte frame;
- be rack mountable;
- edge switches to be Layer 2 management and located in the Communications Room closest to the camera location. Each Communications Room shall be provided with provided with four spare switch ports for future cameras;
- core switch to be Layer 3 management and located in the ground floor main Communications Room; and
- be provided with a minimum five year warranty.
Access Control General

12.047 The ANU access control system is based upon the Cardax (Gallagher) access control system. The proximity readers utilise Mifare Plus (128 bit AES encryption).

12.048 The ANU requires compliance with AS 14443 Identification cards – Contactless integrated circuit(s) cards – Proximity Cards on this component with important additional requirements.

12.049 The access control system will also need to comply with any specific project requirements issued by the ANU in addition to the CBRM, relevant Australian Standards and codes as applicable. Consultants are required to refer to Section.07 Electrical Systems of the CBRM and the ANU Cabling Specification.

12.050 Consultants are also advised to ascertain from the Principal’s Representative the level of interfacing between the Cardax system and other security and building systems at the time of project design. Consultants are also to apply the principles of the ANU Security: Buildings and Site policy.

Requirement

12.051 Access card specifications will need to comply with AS 14443 for proximity cards used with the Cardax or equal equivalent system.

12.052 The ANU has specified a minimum requirement of 128 bit AES encryption for the proximity card system chosen Cardax Mifare Plus (X configuration).

Replacement of Existing Hardware Where Required

12.053 Clear descriptions of how the work would be accomplished within buildings with areas of possible concern clearly explained in a series of compliance statements.

Functional Overview - Electronic Access Control System - Campus Wide System

12.054 The system shall provide a means to control access through nominated doors having electric locking door status monitoring and access control readers. Access rights associated with a presented access card shall be checked for validity based on card, access area, access time and any other access management function defined in this specification; as stored in intelligent field controllers. Access shall be granted or denied, dependent on the access privilege. Access rights shall be programmed in a variety of ways to allow flexibility.

12.055 The system shall provide access control in elevators as identified in schedules enabling the access of each cardholder to have access to any combination of floors over specified time periods. The interface to the elevator manufacturer’s equipment shall be by either low level interface (relay outputs) or preferably by a high level (data) interface.

12.056 The system shall monitor the condition of inputs. The system shall be able to be programmed to apply a variety of conditions to the way in which these inputs are monitored and shall enunciate the condition of such inputs in accordance with such programming.
12.057 The system shall provide a fully functional intruder alarm system including entry and exit delays where intruder detection sensors are connected to system inputs. The intruder alarm systems component shall be fully integrated with the access control aspects of the system. It shall be possible to set (secure) or unset (unsecure) areas from any access control reader associated with an area, or via Remote Arming Terminals (RAT’s) or as required from defined central control locations.

12.058 Intercom functionality shall be integrated with a card reader, enabling a card reader user to talk to an operator as and when required, and an operator to talk directly to the card reader user. All intercom communications shall utilise the common Integrated Security system network and communications cabling infrastructure; and be fully integrated with the access control system.

12.059 The system shall provide an integrated software facility for the design and production of photo ID cards.

12.060 The system shall be ‘OPC Alarms and Events’ enabled using Microsoft COM and DCOM enabling integration of event data with other third party OPC enabled automation and business systems.

12.061 The system shall allow data exchange with other applications using XML protocols for schedule changes, and card record changes. The system shall be capable of carrying out the data exchange on a batch or real time processing basis.

12.062 The system server shall be Microsoft Windows (enterprise edition) compatible. If an alternative operating system is designed, full details must be supplied on how the alternative meets the ANU criteria.

12.063 All system communications must be totally integrated with either existing or new firewalled LAN/WAN networks using the ANU IP numbering scheme.

12.064 Connection to Intelligent Field Controllers (IFCs) shall be achieved using Ethernet cabling supporting 10baseT and TCP/IP protocols. The network connection must be on-board the IFC. Interface transceiver units (10BaseT to RS485, RS232 and the like) are not acceptable.

12.065 Remote IFCs not permanently connected to the network can be connected via a PSTN service, using TCP/IP protocols.

12.066 Connection from the remote IFC to the server shall be either via dialup to an Internet Service Provider (ISP) using encrypted TCP/IP; and then via an approved firewall through into the IT environment or via dialup directly to a remote arming station (RAS) connection to the Server.

12.067 All system software upgrades shall be downloadable through the network to the IFC.

12.068 All data communication internal to the system on the TCP/IP network between IFC’s and between IFC’s and the Server shall be encrypted using symmetrical session keys and an industry-standard encryption algorithm to a minimum of 40 Bits (Secure Socket Layer). Session keys shall be changed on a regular basis at intervals no longer than 24 hours.
12.069 The system shall report all events to the operator(s) as configured and shall produce and maintain a log of all system events, alarms and operator actions.

12.070 The system shall provide a means for an operator to extract information relative to the event log and system configuration and produce this information in the form of printed reports, screen displays or ASCII files.

12.071 The system shall provide for a Windows based User Interface with Site Plans and interactive icons representing the location and real-time status of access control, and alarm monitoring equipment.

12.072 The system must provide emergency evacuation reporting.

12.073 All equipment shall have the following approvals:
- FCC Part 15;
- CE approval BS EN 50130; and
- CE approval BS EN 55022.

12.074 Encoders and readers shall also meet:
- CE ETS 300 683 Short Range Devices; and/or
- C-Tick RFS29.

12.075 The system software shall be written in a fully structured, fully validated and commercially available language that provides a strictly controlled development environment.

12.076 Comprehensive backup and archiving facilities shall be incorporated as an integral part of the system software.

12.077 The system shall include system division suitable for multi-tenant buildings. Operators shall only be able to access those parts of the system which fall within their division and operator privileges.

12.078 IFCs must support peer to peer communications for input and output communications between IFC’s. Systems that require the main server for communications between panels are unacceptable.

Readers

12.079 All readers installed on campus in new installations are required to be Cardax (or equal equivalent) Mifare Plus (X configuration) proximity readers, charcoal grey in colour or to match existing installation.

Lock Types

12.080 The locking devices controlled by these systems shall be either the Magna lock type or the Padde ES2000 type. Some variations may be encountered, such as automatic doors, all documentation is to be provided to the Principal’s Representative for review prior to final specification.

12.081 Padde EML6 for single leaf doors. Incorporating bond sense, LED on lock and 1500 LBS holding force.
12.082 Padde EML10 for double leaf doors. Incorporating bond sense, LED on lock and 1500 LBS holding force.

Locking Style

12.083 All locks shall be the fail to safe type (power on to lock).

12.084 All Magna lock types shall be fitted with tamper proof screws if on the non-secure side and to include appropriate mounting equipment for inward and outward swing doors.

12.085 All Electric strikes shall be fitted with a diode across the coil to reduce “Back EMF”. Strikes shall also have high strength striker cover plates securely mounted to protect the tongue and lock mechanism from being forced or manipulated.

12.086 Magna lock types (unless otherwise approved) shall always be installed on the secure side of a door.

12.087 An additional manual lock set will be provided (where none pre-exists) to ensure that the door can be secured should the access or power system fail (cylinder and key format to be specified by the ANU).

Break Glass Units

12.088 All electric locks installed must have a Green break glass unit mounted adjacent to the door at 900-1200 mm above finished floor level. Fracturing/breaking the glass or plastic must initiate a direct break in lock power to allow free egress and produce an individual alarm on the Command Centre e.g. Glass broken.

12.089 The break glass (Green) shall be key resettable dual pole units utilising clear plastic inserts.

12.090 The initiation of free egress via communication input is not permitted.

Reed Switches

- Sentrol type flush type;
- 19 or 25 mm; and
- Only be surface mount where flush mount is not suitable.

Power Supplies

12.091 Low voltage power supplies shall be self-contained and installed within the secure equipment cabinets. The power supplies shall be a switch mode with a minimum capacity of 2 A and shall have stand by batteries capable of sustaining continuous operation for at least eight hours in the event of a mains supply failure. Power supplies to incorporate mains fail and battery low indications.

12.092 All power supplies will be Austel Approved 240 V/12 V DC.

12.093 All power supplies must have their mains and battery condition monitored and shall activate an alarm on the Cardax or equal equivalent System if a problem occurs for example loss of mains (240 V) and/or low battery alarm.

12.094 All power supplies installed shall not have more than 65% current drain.
12.095 For additions to existing systems current draw shall not exceed 80% before new additional power supplies should be allowed for.

12.096 The ANU prefers the use of linear power supplies to reduce any possible interfaces to the facilities electronic equipment used in high technology buildings.

12.097 The minimum specifications as above shall be utilised when supplying linear units.

12.098 Details must be provided in the material list of the capacity and type of each power supply included to meet the tender requirement.

12.099 Power supplies shall be scaled up in output capacity so as to have the ability to recharge the connected battery/s from a fully discharged condition without tripping or failing.

Batteries

12.0100 EDAM BA006 (or equal equivalent) minimum 12 V 7 A per hour capacity (sealed unit).

12.0101 Be monitored by the power supply for low battery alarm.

12.0102 Battery capacity scaling shall be considered in lieu of multiple minimum sized units.

Equipment Cabinets

12.0103 Rittel or equal equivalent (samples may be requested).

12.0104 All equipment cabinets are to be tamper monitored to both the door and to the rear-mounting surface.

12.0105 All wiring inside the enclosure shall conform to Australian Standards and Section 07 Electrical Systems.

Time Controlled Access Doors (TCR)

12.0106 All doors installed without readers will comply with Section 02 Architectural Requirements.

12.0107 Each TCR will have the reader cable installed and located above the door for future reader connection.

12.0108 Hardware allocation should allow for the future connection of the reader to the system.

Request to Exit Button

12.0109 Any exit buttons specified will meet the AS 1428 Design for Access and Mobility suite of standards for location and operation.

12.0110 The request to exist button shall be an approved button assembly equal equivalent to the EX16 specification.

Security Alarms

12.0111 Within the ANU Campus there were two options for installing alarms systems, the first is to utilise the Gallagher access control system and the second is the stand alone alarm system. The ANU will, where possible replace existing stand-alone security/intruder detection panels
with an integrated access control and intruder alarm system. For all new systems an integrated access control and intruder alarm system is to be designed.

12.0112 For alarm system indication there are a minimum of two approved means:

a) RAT indication or equivalent
b) Red indicator located above the reader

Cardax System or Equivalent Intruder System

12.0113 Connection to a relay interface output board with security devices such as detectors or reed switches. These devices will be set up with an alarm zone that can be controlled by a reader and/or a RAT and/or a Schedule (timeframe).

12.0114 The ANU will assess the capability of the intruder component system in relation to alarm management and the functionality for remote arming and disarming

Security Panel Option

12.0115 The ANU reserves the right for site installations with specific needs to retain the separate panel installation in such sites on campus the equipment shall:

- be RAT, C&K Sierra Type or approved alternative;
- supply a normal contact that can interface into the Cardax or equal equivalent;
- have only one detection device per zone (unless otherwise briefed and advised by the ANU); and
- not have its installers combination code changed from factory default.

Glass Break Detectors

12.0116 Dual flex/audio detection separate microphone.

12.0117 Minimum 7.6 m detection range.

Detectors

12.0118 Dual Technology PIR and Microwave.

12.0119 Selectable pulse count and walk test facility.

Duress Buttons

12.0120 DURE001 PAB 11-117 Holds Up with Centre Push (or equal equivalent); they must lock on and be able to be reset manually through use of a key.

Conduits

12.0121 Internal

a) Shall be rigid LD-UPVC of minimum 25 mm diameter.
b) All fittings, draw boxes, bends and couplings are to be purpose made.
c) Shall be joined using an approved solvent cement.
d) Shall be secured using metal saddles spaced at 600 mm (maximum) centres and within 150 mm of all fittings.
e) Shall be installed so that cables can be drawn in at draw boxes only. Inspection elbows shall not be classified as draw points.

f) Shall be filled with cables to not more than 60% of its capacity.

Cable Duct
a) Shall be fitted with removable covers.
b) Shall be fitted with the manufacturer’s standard bends, elbows, couplings and reducers.
c) Shall be manufactured from extruded PVC when exposed. When concealed cavities and ceiling spaces maybe metal.
d) Shall be filled with cables to not more than 60% of its capacity.
e) Shall not be used on external building installations

12.0122 External
a) All conduits installed externally of a building shall be steel conduit (plated or painted depending on environment) to prevent tampering.
b) Where possible, all visible conduit and duct routes shall be identified on contractual documentation.

12.0123 Fixings
a) Shall comprise corrosive resistant metal thread screws or bolts into expanding type masonry anchors for fixing to concrete or masonry.
b) Shall comprise tapered woodscrews for fixing to timber (full thread).
c) Shall comprise metal expanding anchors for fixings to gyprock.
d) All fixings to be corrosive resistant.

External Reader Fixing and Installation Rating
12.0124 All card reader installations on buildings and facilities (including under awnings, verandas, porticos and under crofts) shall meet or exceed an IP65 rating.

Network and 240 V Construction and Responsibility
12.0125 The ANU builds and supports its campus IT Network and electrical reticulation in buildings.

12.0126 The access control system currently operates in a virtual private network with an ANU controlled IP range. The network resides behind an ANU administered firewall. Power over Ethernet is available in some part of the network.

12.0127 Cabling and Ethernet wall plug installation is managed by Network Services within ANU Information Technology Services.

12.0128 Network cabling shall comply with the ANU Cabling Specification. Note that Ethernet cables shall comply with CAT6 specifications.